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Dynamic subgrid modelling for time dependent
convection–di�usion–reaction equations

with fractal solutions
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SUMMARY

A dynamic scale similarity model is proposed. The subgrid model is tested for model problems related to
time dependent non-linear convection–di�usion–reaction systems with fractal solutions. The error of an
approximate solution with subgrid model on a scale h is typically smaller than that of a solution without
subgrid model on the scale h=2. We also consider the problem of a posteriori error estimation for fractal
solutions, splitting the total computational error into a numerical error, related to the discretization of
the continuous equations, and a modelling error, taking into account the quality of the subgrid model.
Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

In recent years methods of dynamic subgrid modelling have been proposed, in particular in
turbulence modelling in Dynamic Large Eddy Simulations (DLES) by Germano et al. [1].
The purpose of a subgrid model is to model the e�ect of unresolvable scales on resolvable
scales corresponding to closure in turbulence modelling. The basic idea in dynamic subgrid
modelling is to �t a particular subgrid model based on computed solutions on di�erent re-
solvable scales, and then extrapolate the model to subgrid scales. In order for such a process
based on scale extrapolation to work, it is necessary that the underlying problem has some
‘scale regularity’, so that the experience gained by �tting the model on a coarse scale with
a �ne scale solution as reference may be extrapolated to the �ner scale. There is empirical
evidence ([2, 3] and references therein) that many problems involving a range of scales from
large to small, such as �uid �ow at larger Reynolds numbers and �ow in heterogeneous
porous media, in fact do have such a regularity, once the larger scales related to the geometry
of the particular problem have been resolved.
The purpose of this note is to study the feasibility of the indicated dynamic subgrid mod-

elling procedure in the context of some model problems related to convection–di�usion–
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reaction systems with ‘fractal’ solutions, where the fractality originates from data. In this
paper, we study time dependent problems, extending the study of stationary problems in Ref-
erences [4–6]. The relevance of studying fractal models is motivated by the abundant number
of experimental observations of fractality in e.g. turbulent �ows (see e.g. Reference [3]).

PROBLEM FORMULATION

We consider the model problem: Find u : �× [0; T ]→Rn such that

u̇+ Lu= u̇− ��u+ � · ∇u=f(u); ∀(x; t)∈�× (0; T ) (1)

u= uD; ∀(x; t)∈�D × (0; T ); @u
@n
= uN ; ∀(x; t)∈�N × (0; T ) (2)

u(x; 0)= u0(x); ∀x∈� (3)

where f :Rn →Rn is smooth, �⊂Rd and @�=�D ∪�N . Typically we will assume that � is
small and that the solution u to (1)–(3) contains a range of scales, from very small scales
to large scales, induced by either the initial condition u0(x) or the di�erential operator L
through �. Assuming we want to �nd an approximation of u on the scale h, representing the
�nest spatial computational scale, we de�ne for each �xed t the spatial running average uh

of u on the scale h by

uh(x; t)=
1
hd

∫ x1+h=2

x1−h=2
· · ·
∫ xd+h=2

xd−h=2
u(y; t) dy1 : : : dyd (4)

where we note that this operator commutes with space and time di�erentiation. Applying this
operator to (1)–(3) we �nd that the running average uh satis�es the equation

u̇h + Lhuh= u̇h + �h · ∇uh − ��uh=f(uh) + Fh(u); uh(x; 0)= uh
0(x) (5)

where Lh is a simpli�ed operator on the scale h resulting from approximating � by �h and the
correction term Fh(u)= (f(u))h−f(uh)+Lhuh−(Lu)h contains the in�uence of the unresolved
scales on uh. We consider a computational problem without subgrid model of the form

u̇h + Lhuh=f(uh); uh(x; 0)= uh
0(x) (6)

and a corresponding problem with subgrid model of the form

˙̃uh + Lhũh=f(ũh) + F̃h(ũh); ũh(x; 0)= uh
0(x) (7)

where F̃h(ũh) should approximate Fh(u). In this paper, we will consider a subgrid model of
the form F̃h(ũh)= g(Fh(ũh); F2h(ũh); F4h(ũh)), where the function g is derived based on a scale
regularity assumption on Fh(u).
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ANALYSIS OF Fh(u) USING THE HAAR MRA

In the rest of this paper, we let �= [0; 1]2 and for each h=2−i, with i=0; 1; : : :, we de-
�ne a corresponding regular quadratic mesh �h with elements corresponding to subdomains
�i; k with side length h. We denote the space of piecewise constant functions on �h by Vi,
and the closure of the union of the Vj’s is equal to L2(�). The chain of closed subspaces
V0⊂V1⊂ · · ·⊂Vj ⊂ · · · is denoted a Haar Multiresolution Analysis (MRA) of L2(�) [7].
Each Vj is spanned by the dilates and integer translates of one scale function �∈V0, that
is, Vj=span{�j; k(x)=2j�(2jx − k)}. The functions �j; k form an L2-orthonormal basis in Vj,
and we denote the orthogonal complement of Vj in Vj+1 by Wj, which is generated by another
orthonormal basis (the wavelets) 	j; k(x)=2j	(2jx − k), where 	∈W0 is called the mother
wavelet. Wj=W 1

j ⊕W 2
j ⊕W 3

j , where the W�
j ’s represent di�erences in the horizontal, vertical

and diagonal directions, respectively. The space L2(�) can now be represented as the direct
sum L2(�)=V0⊕W 1

0 ⊕ · · ·⊕W 3
0 ⊕ · · ·⊕W 1

j ⊕ · · ·⊕W 3
j ⊕ · · ·, and each f∈L2(�) has a unique

decomposition f=f��+
∑

j; k f
1

j; k	
1
j; k + · · ·+f3j; k	

3
j; k =f� +

∑
j f

1
j + · · ·+f3j , where the f�

j ’s
represent the contributions on the di�erent scales 2−j. For the one-dimensional Haar MRA in
L2([0; 1]), the scale function is de�ned by ’(x)=1 for x∈ (0; 1) and 0 else, and the mother
wavelet is de�ned by  (x)=1 for x∈ (0; 12 ), −1 for x∈ ( 12 ; 1) and 0 else. In two-dimensions
the scale function and the wavelets are tensor products of the one-dimensional scale func-
tion and wavelets. For the two-dimensional Haar MRA in L2(�) we have the scale func-
tion �(x1; x2)=’(x1)’(x2) and the wavelets 	1(x1; x2)=’(x1) (x2), 	2(x1; x2)=  (x1)’(x2),
	3(x1; x2)=  (x1) (x2).

De�nition 1
For f∈L2(�), we de�ne [f]h=f’ +

∑
j¡i f

1
j; k	

1
j; k + f2j; k	

2
j; k + f3j; k	

3
j; k .

The linear mapping L2 �f→ [f]h ∈Vi can then be identi�ed with the L2-projection of f
onto Vi, and we note that [f]h= 
fh, where 
fh is the piecewise constant function on �h that
equals fh in the midpoints of each element in �h. If we let 
Fh(u) denote the piecewise constant
function on �h that equals Fh(u) in the midpoints of the elements of �h, we have


Fh(u)= [f(u)]h − f([u]h)− ([� · ∇u]h − [�]h · [∇u]h)

which for second-order reaction terms f(u) leads us to model covariances of the form

Eh(v; w)= [vw]h − [v]h[w]h (8)

for given functions v and w. The following lemma from Reference [5] shows that Eh(v; w)
equals a mean of all Haar coe�cients corresponding to Haar basis functions with support in
�i; k .

Lemma 1
For

x∈�i; k ⇒Eh(v; w)(x)=22i
∑
j¿i

l:�j; l ⊂�i; k

(v1j; lw
1
j; l + v2j; lw

2
j; l + v3j; lw

3
j; l)
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SCALE EXTRAPOLATION USING SELF-SIMILARITY

By a fractal or self-similar function we mean, in this paper, a function that has some sort of
scale similarity, following one of several de�nitions of a fractal by Mandelbrot [8]: A fractal
is a shape made of parts similar to the whole in some way.
In Large Eddy Simulations (LES) the objective of subgrid modelling is to model the di-

vergence of the exact Reynolds stress tensor �ij=(uiuj)h − uh
i u

h
j , where each component has

the form of a covariance similar to (8). There is an agreement of the existence of an inertial
range in the energy spectrum of a turbulent �ow [2], and di�erent types of scale similar-
ity assumptions also on the Reynolds stresses have been used to motivate various subgrid
models, for example in the dynamic procedure [1] the parameters in a particular model are
determined by comparing di�erent averages of the resolved Reynolds stresses. In scale sim-
ilarity models [9] the assumption is that the exact Reynolds stresses are proportional to the
resolved Reynolds stresses. In References [4–6] we have used an assumption based on the
existence of such a scale similarity with respect to a Haar MRA generated by the hierarchy
of successively re�ned computational meshes. This assumption is investigated in Reference
[10] for a transition study of a Couette �ow. The �nest computational scale is h=2−6 and
the sum of the Haar coe�cients for the Reynolds stress tensor component �11 are plotted
for three di�erent scales in Figure 1. Component �11 is chosen since the streamwise velocity
dominates the Couette �ow. The transition to turbulence has started even though it is not
fully developed, and the plot shows 60 elements in the coarsest mesh corresponding to the
scale 8h, and we see that the decrease in the Haar coe�cients is reasonable regular and we
consider this as some evidence of scale similarity of the Reynolds stresses for this �ow, in
the form of a power law for the sum of Haar coe�cients on each scale. Scale similarity with
respect to a Haar MRA has also been observed in experimental aerothermal data [11]. We
will base our subgrid model on an Ansatz of the form

Eh(v; w)(x)=C(x)h�(x); x∈� (9)

The Ansatz (9) can be derived using Lemma 1 for the special case when the Haar coe�cients
of the functions v and w in (8) have the form v�j; k = ��(x)2−j(1+��(x)) and w�

j; k =��(x)2−j(1+��(x)),
respectively, which corresponds to the simple self-similar forms vj+1 =2−�(x)vj and wj+1 =
2−�(x)wj. We then have, assuming ��; ��; ��; �� ∈Vi, that Eh(v; w)(x)=C1(x)h�1(x)+C2(x)h�2(x)+
C3(x)h�3(x), where C�= ����=(1 − 2−��) and ��= �� + ��. The proof is in Reference [5], and
for the case when �1 = �2 = �3 and �1 = �2 = �3 we get (9). Lemma 1 further gives:

Proposition 2

E2k h([v]
h; [w]h)=E2k h(v; w)− Eh(v; w); 06k6i

Proof
By Lemma 1, E2k h(v; w) is a sum over the scales j¿i− k. Split this sum into two sums: one
sum over the scales j¿i which is equal to Eh(v; w), and one sum over the scales i− k6j¡i
which is equal to E2k h([v]h; [w]h).

In the following, we let Eh(x) mean Eh(v; w)(x) if nothing else is stated, and we now use
the Ansatz (9) to derive the following propositions:
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Figure 1. Sum of Haar coe�cients for �8h11(Uh) on scales 8h (‘o’), 4h (‘∗’), and 2h (‘+’).

Proposition 3
Assume that (9) is valid with C; �∈Vi−2, then

Eh(v; w)= (E2h(v; w)− Eh(v; w))
/(

E4h(v; w)− E2h(v; w)
E2h(v; w)− Eh(v; w)

− 1
)

Proof
Using that Eh; E2h ∈Vi−2, (9) gives that

E4h − E2h
E2h − Eh

=
C(4h)� − C(2h)�

C(2h)� − Ch� =2�

and in the same way we have that E2h−Eh=Ch�(2�−1)=Eh(2�−1)⇒Eh=(E2h−Eh)=(2�−1)

Proposition 4
Assume that (9) is valid with C; �∈Vi−2, then

Eh([v]2
−nh; [w]2

−nh)(v; w)=

(
1−

(
E4h(v; w)− E2h(v; w)
E2h(v; w)− Eh(v; w)

)−n
)

Eh(v; w)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:583–592
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Proof
Proposition 2⇒Eh([v]2

−nh; [w]2
−nh)=Eh(v; w)−E2−nh(v; w)=Ch�(1−2−n�)=Eh(v; w)(1−2−n�),

and we �nally have 2� from the proof of Proposition 3.

Propositions 2–4 motivates, for each t, an approximation of [Eh(v; w)]4h, since an underlying
assumption in Propositions 3 and 4 was that Eh(v; w)∈Vi−2. Each component of 
Fh(u) is a
sum of terms of the form (8) and we use Propositions 3 and 4 to approximate each of these
terms. We can use Proposition 2 to express these approximations in terms of [v]h, [w]h instead
of v, w, which is desirable since we will only have access to approximative solutions ṽh, w̃hon
the scale h. If F̃h(ũ)k denotes the approximation of 
Fh(u)k , the kth component of 
Fh(u), and
2−nh is the �nest scale in the exact solution u, we have a subgrid model of the form


Fh(u)k =
∑

Eh(v; w) ⇒ F̃h(ũh)k =
∑

Ẽh(ṽh; w̃h) (10)

Ẽh(ṽh; w̃h) =

(
1−

(
E4h(ṽh; w̃h)− [E2h(ṽh; w̃h)]4h

[E2h(ṽh; w̃h)]4h − [Eh(ṽh; w̃h)]4h

)−n
)

× [E2h(ṽh; w̃h)]4h − [Eh(ṽh; w̃h)]4h

E4h(ṽh; w̃h)− [E2h(ṽh; w̃h)]4h

[E2h(ṽh; w̃h)]4h − [Eh(ṽh; w̃h)]4h
− 1

A POSTERIORI ERROR ANALYSIS

A general strategy for a posteriori error analysis based on duality is described in Reference
[12]. In this section we will make some remarks concerning the non-linear problems with
fractal solutions that appear in this paper. We assume that u is the solution to (1)–(3)
and that U is a numerical approximation to the solution of either (6) or (7). The standard
technique to obtain a posteriori error estimates for the error e= u − U is a chosen norm
to introduce a linearized dual problem of the form: −’̇ − A(u;U )∗’=0; ’(T )=’T , where
∗ denotes the transpose. The choice of ’T determines in what norm we estimate e, for
example, ’T = e(T )=‖e(T )‖ gives a L2-estimate of e. Here ‖ · ‖ denotes the L2-norm and we
further let (· ; ·) denote the L2-inner product. Following Reference [12] (assuming continuous
approximation in time) we get for ’T = e(T )=‖e(T )‖ that

‖e(T )‖= (e(T ); e(T )=‖e(T )‖)= (e(T ); ’(T )) +
∫ T

0
(e;−’̇− A(u;U )∗’) dt

= (e(0); ’(0)) +
∫ T

0
(ė+ A(u;U )e; ’) dt

Now if we choose A(u;U ) such that A(u;U )e=Lu− f(u)− (LU − f(U )) we get that

‖e(T )‖=(e(0); ’(0)) +
∫ T

0
(f(U )− U̇ − LU;’) dt

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:583–592
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If U =Uh is a numerical approximation of (6) we cannot expect the residual f(U )− U̇ −LU
to be small since (6) involves the simpli�ed operator Lh and not L. If we on the other hand
linearize at uh instead of u and �h instead of �, that is, we let A(u;U )e=Lhuh − f(uh) −
(LhU −f(U )). We then get e(0)=0 (by a suitable choice of Uh(0)) and by (5) we get that

‖(uh −Uh)(T )‖=
∫ T

0
(f(Uh)− U̇h − LhUh; ’) dt +

∫ T

0
(Fh(u); ’) dt (11)

where we now have a numerical residual, R(Uh)=f(Uh) − U̇h − LhUh, corresponding to the
discretization error in approximating (6), and Fh(u) which corresponds to a modelling residual,
independent of Uh. If we on the other hand let U = Ũh be a numerical approximation of (7),
we get that

‖(uh − Ũh)(T )‖=
∫ T

0
(F̃h(Ũh) + f(Ũh)− ˙̃Uh − LhŨh; ’) dt +

∫ T

0
(Fh(u)− F̃h(Ũh); ’) dt

where we now have a numerical residual, R(Ũh)= F̃h(Ũh)+f(Ũh)− ˙̃Uh−LhŨh, corresponding
to the discretization error in approximating (7). The second term contains the di�erence
Fh(u)− F̃h(Ũh), which corresponds to a modelling residual one seeks to minimize by subgrid
modelling.
We conclude that if u contains unresolvable subgrid scales, then the error with respect to uh

is the appropriate error to study, and thus the dual problem to be solved should be linearized
at uh and not at u. The dual problem then does not contain any scales �ner than h, which
means that it will be easy to solve and in particular no subgrid modelling is needed. This
linearization also naturally splits the a posteriori error estimates in two terms, one involving
a numerical residual and one involving a modelling residual, which enables us to balance
the errors from discretization and subgrid modelling. In estimating the error uh −Uh by (11),
Fh(u) is unavailable but can be approximated by the subgrid model F̃h(Uh). To estimate the
di�erence Fh(u)− F̃h(Ũh) further extrapolation seems to be needed.

APPLICATIONS

We will now test the model (10) for some simple model problems in two space dimensions,
where the scale similarity is introduced through data. We construct two-dimensional fractal
data as sums of local tensor products of the one-dimensional fractal Weierstrass function
W�;�(x)= �

∑N
j=0 2

−j� sin(2j · 2	x), where we let �= �=0:1 in all examples. The motivation
for the test problems is that they contain important features of reactive �ow problems. The
�rst test problem is a reaction–di�usion problem with a Volterra–Lotka type reaction term
where the scale similarity appears in the initial data, simulating for example a reactor with
two reacting species. We then add a small convection corresponding to a stirred reactor. The
second test problem is a convection–di�usion problem where the scale similarity appears as
the convecting velocity �eld, simulating a passive scalar in a turbulent velocity �eld. In all
examples we will have h=2−5.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:583–592
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Table I. Error in u1 in L1-norm for VL with �=0.

Subgrid model t=0:5 t=1:0 t=1:5 t=2:0

No model 1:9× 10−3 7:2× 10−3 1:1× 10−2 1:1× 10−2
No model on h=2 1:4× 10−3 4:6× 10−3 7:0× 10−3 6:8× 10−3
F̃h(ũh)=F2h(ũh; ũh) 1:4× 10−3 4:8× 10−3 6:5× 10−3 6:3× 10−3
Model (10) 1:0× 10−3 2:8× 10−3 3:8× 10−3 4:2× 10−3

Table II. Error in u2in L1-norm for VL with �=0.

Subgrid model t=0:5 t=1:0 t=1:5 t=2:0

No model 1:4× 10−4 3:4× 10−4 2:0× 10−4 4:4× 10−4
No model on h=2 1:0× 10−4 2:1× 10−4 1:2× 10−4 2:9× 10−4
F̃h(ũh)=F2h(ũh; ũh) 9:0× 10−5 2:0× 10−4 1:5× 10−4 2:8× 10−4
Model (10) 7:0× 10−5 1:4× 10−4 1:5× 10−4 2:4× 10−4

Table III. Error in u1 in L1-norm for VL with � �=0.
Subgrid model t=0:5 t=1:0 t=1:5 t=2:0

No model 2:5× 10−5 1:5× 10−4 3:4× 10−4 6:4× 10−4
No model on h=2 2:5× 10−5 1:1× 10−4 1:9× 10−4 3:3× 10−4
F̃h(ũh)=F2h(ũh; ũh) 2:5× 10−5 1:1× 10−4 2:1× 10−4 5:0× 10−4
Model (10) 2:0× 10−5 6:0× 10−5 2:0× 10−4 5:6× 10−4

Volterra–Lotka (VL)

We consider a reaction dominated problem of the form

u̇1 − ��u1 = u1(1− u2); u̇2 − ��u2 + � · ∇u2 = u2(u1 − 1)
@u
@n

∣∣∣∣
@�
=0; u(x; 0)= (W 2D

�;� (x); 1)

where �=10−6, which corresponds to the classical Volterra–Lotka system with small di�usion
and convection in one component. We have Fh(u)= (−(u1u2)h + uh

1u
h
2 ; (u1u2)

h − uh
1u

h
2), and

by (10) we have that F̃h(ũh)= (−Ẽh(ũ1; ũ2); Ẽh(ũ1; ũ2)), with n=4 (reference scale minus
computational scale). For these problems we use a central di�erence-Crank–Nicolson scheme
for the midpoints of the elements, where we regard these midpoint values to represent a
piecewise constant approximation over the elements, and the reference scale is 2−9 in the
computation of the error. The solutions are oscillating and both u1 and u2 are fractal for t¿0,
even though u2(x; 0)=1. We want to approximate uh, and the errors ‖uh − U‖ are shown
in Tables I–III, where U is the error without model, without model but computed on the
�ner scale h=2 and then projected onto the scale h, with the model (10), and with the model
F̃h(ũh)=F2h(ũh; ũh) corresponding to n=1, meaning that we assume that no �ner scales than

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:583–592
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Table IV. Error in L1-norm for FC.

Subgrid model t=0:25 t=0:5 t=0:75 t=1:0

No model 7:2× 10−3 1:2× 10−2 1:1× 10−2 1:1× 10−2
Model (10) 5:8× 10−3 7:2× 10−3 6:2× 10−3 6:2× 10−3

h=2 are present in the exact solution u. We �rst let �=0 and compute to T =2, then we let �
be a rotational mixing of order h: �= h (sin(	x1) cos(	x2);− cos(	x1) sin(	x2)) and here we
only compute to T =1, since after T =1 the subgrid scales are dominated by the convective
streaks due to �. We study the error for each component individually, and for �=0 we �nd
that the solution with the subgrid model (10) is the best for both components, even though
the modelling errors are smaller in u2 since u2(x; 0) is constant. We also note that the solution
with the subgrid model corresponding to n=1 is very close to the solution on the scale h=2
without subgrid model as expected. For � �=0 the solution with subgrid model (10) is best
for u1 but, because of the convection, subgrid scales in u2 do not develop and the solutions
with subgrid models does not di�er signi�cantly from the solution without subgrid model.
The solution on h=2 is better since the numerical error is then reduced.

Fractal convection (FC)

We also consider a convection dominated problem of the form

u̇+ � · ∇u− ��u=1; u|x1=0; x2=0 =0;
@u
@n

|x1=1; x2=1 =0; u(x; 0)=0 (12)

for �=(W 2D
�;� ;W 2D

�;� ) and �=10−3, which we solve by a Streamline Di�usion cG(1)cG(1)
method [13] with bilinear elements. In the computation of the error the reference scale is
2−8. The solution is in this case relatively smooth since the fractal � is only acting on the
derivatives of the solution. We have Fh(u)=�h · (∇u)h − (� · ∇u)h, and in Table IV we see
that the error in the solution with the subgrid model (10) is less than in the solution without
subgrid model.

CONCLUSIONS

A dynamic scale similarity model for convection–di�usion-reaction problems with fractal solu-
tions was proposed, based on a scale regularity Ansatz with respect to a Haar MRA generated
by the hierarchy of successively re�ned computational meshes. In computational experiments
the solution to a problem on the scale h with subgrid model was better than the solution to a
problem on scale h=2 without subgrid model. We also considered the problem of a posteriori
error estimation for these problems. We found that by linearize the dual problem at uh, and not
at u, the error representation naturally split into separate terms involving a numerical residual
and a modelling residual, respectively, which enables us to balance errors from discretization
and subgrid modelling.
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